
Faculty of Computers and Artificial Intelligence

CS433: Internet of Things (IoT)

 Page 1 of 13

Lab no 07 Part02 –Interacting with Car Shadow
over the Web

The purpose of this lab is to be familiar with AWS shadows in IoT. In this
lab, we will use a browser to interact with car1's Thing Shadow

Parts: -

1. Create the Cognito Identity Pool.

2. Modify the unauthenticated IAM Role.

3. Create the S3 Bucket with permission.

4. Download the webpage code and upload it to S3.

5. Start car1 and use the webpage application.

6. Delete the resources created in this exercise.

Required Resources

• 1 PC with Internet access.

• Account in AWS Management Console.

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 2 of 13

In this exercise, you will use a browser to interact with car1's Thing Shadow.

Up until now, you have only used the MQTT protocol directly to interact with your AWS IoT Endpoint.

This used port 8443 and can only authenticate using X.509 client certificates. That is why you had to

configure those for each of the Car Things. You can see the list of supported protocols in the

documentation with the supported authentication protocol.

In a browser, although it could be possible to store the certificate and private key of your Car Thing in

your JavaScript code, that wouldn't be very secure. Also, using MQTT in a browser isn't straight forward.

As it's a browser, the favorite protocol is HTTPS for communication outbound. Although it is supported

by the AWS IoT service, it has been proven that the HTTPS protocol doesn't have the same performance

as the MQTT protocol when many messages are sent. That is due to the overhead of HTTPS as the

connection needs to be re-established for every message. As opposed to MQTT where one connection can

be used for all messages to be sent. Unfortunately, using MQTT directly in the browser isn't an option.

Instead, MQTT over a WebSocket is a lot easier to do. Although there is an overhead of connection

establishment with a WebSocket, we will gain back on the benefit of the small overhead of MQTT inside

the WebSocket.

The MQTT over WebSocket protocol only supports the Signature version 4 (SigV4) authentication as you

saw in the documentation. To do so, the wss://endpoint URL will need to be signed using an Access Key

and a Secret Key. You could store those in your JavaScript code, but that wouldn't be very secure. Instead,

you need to generate a temporary Access Key and Secret Key when the user opens the page or authenticate.

The service to help with that is Cognito Identity Pool (Federated Identities).

One of the features of Cognito Identity Pools is that you can specify an IAM Role for unauthenticated

users. This means that even if your user doesn't authenticate, you can still provide credentials and

permissions to that user. You will be using this feature in the lab as authentication in Cognito Identity

Pools is beyond the scope of the class.

You will start with creating a Cognito Identity Pool. That will create 2 IAM Roles: authenticated and

unauthenticated. You will then modify the unauthenticated role to attach an IAM Policy that will allow

the Role to communicate with the Thing Shadow of car1.

You will use the Simple Storage Service (S3) to host this static website. That website will make use of

JavaScript to communicate with your Cognito Identity Pool to get temporary credentials. Those

credentials will then be used to authenticate the JavaScript MQTT WebSocket client to your AWS IoT

Endpoint.

Once the website is ready, you will start car1 using the code from Exercise 2.2 and browse to the website

you created. You will then be able to interact with car1's Thing Shadow without requiring using the AWS

Management Console.

The diagram below shows the resources and data flow that you will create in this exercise.

https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 3 of 13

This exercise assumes that the resources from lab6 and the code downloaded in lab 6 part1 haven’t

been deleted. If you have deleted those components, you will need to start with lab 6 part 1 again and

Section 1 of lab 7 part 1 to get the code for interacting with car1's Thing Shadow.

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 4 of 13

1. Create the Cognito Identity Pool

In this section, you will create a Cognito Identity Pool which will also create 2 IAM Roles.

1. In the AWS Management Console, click Services, and then click Cognito to go to the

Cognito console.

2. Make sure you are in the same Region as the one you used in lab 6. It should

be Frankfurt, Ireland, N. Virginia, Ohio, Oregon or Tokyo. You can validate that by

going to the Cloud9 service and looking for the IoTOnAWS environment. If you don't see

it, you aren't in the right region.

3. Click Manage Identity Pools. It will automatically start the screen of creation of an

Identity Pool as this is your first. If it's not, click the Create new identity pool button.

4. In the Identity pool name field, enter labIoTPool.

5. Click the check mark next to Enable access to unauthenticated identities as this is

what you will be using to authenticate the web application.

6. Click Create Pool.

7. The next screen may take 30 seconds to appear. It will tell you that Cognito needs access

to your resources. It needs to create the 2 IAM Roles: an authenticated Role and an

unauthenticated Role.

8. Expand the View Details link to see the name of the roles that will be created. You can

also see the IAM Policy that will be attached by clicking on the View Policy Document.

9. Click Allow.

You have now created your Cognito Identity Pool.

2. Modify the unauthenticated IAM Role

In this section, you will modify the unauthenticated IAM Role that was created as part of the

Cognito Identity Pool creation to authorize, whoever authenticates with this role, the access to

car1's Thing Shadow. To remove complexity, you will use an IAM Policy that already exists which

is more permissive. However, in a production environment, you should use the documentation to

modify the Resource field to be specific to car1.

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 5 of 13

1. In the AWS Management Console, click Services, and then click IAM to go to

the IAM console.

2. Click Roles.

3. In the Search bar, enter Cognito_labIoTPoolUnauth_Role.

4. Click on the Cognito_labIoTPoolUnauth_Role link.

5. Click Attach policies.

6. In the Search bar, enter AWSIoTDataAccess.

7. Click the check mark next to AWSIoTDataAccess.

8. Click Attach policy.

3. Create the S3 Bucket with permissions

In this section, you will create a new S3 Bucket and allow access to upload objects in the bucket

with a Public ACL. This will allow you to upload and browse to your objects as if it was a website

without authenticating in a later section.

1. In the AWS Management Console, click Services, and then click S3 to go to the S3

console.

2. Click the Block public access (account settings) link on the left menu.

3. Click the Edit button.

4. Take a note of the current settings as you will need to put them back to what they were

in the cleanup section of this exercise.

5. Uncheck Block public access to buckets and objects granted through new access

control lists (ACLs).

6. Uncheck Block public access to buckets and objects granted through any access

control lists (ACLs).

7. Click Save changes.

8. Enter confirm in the field.

9. Click Confirm.

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 6 of 13

10. Click the Buckets link on the left menu.

11. Click Create bucket.

12. For the Bucket name field, enter the name of your choice. For example, this could be

labiot-123456.

13. Take in note that name as you will use it again.

14. Click Next.

15. Click Next in the Configure options screen.

16. Check enable ACL.

17. Uncheck Block public access to buckets and objects granted through new access

control lists (ACLs).

18. Uncheck Block public access to buckets and objects granted through any access

control lists (ACLs).

19. In the warning box that just appeared above, check I acknowledge that the current

settings might result in this bucket and the objects within becoming public.

20. Click Next.

21. Click Create bucket.

4. Download the webpage code and upload it to S3

In this section, you will download the webpage code and modify the aws-

configuration.js configuration file to match your account. Then you will upload the code to S3.

4.1 Start Cloud9

Your Cloud9 environment may have shut down at this point as it's supposed to automatically

shut down after 30 minutes. To restart it, follow these steps:

1. In the AWS Management Console, click Services, and then click Cloud9 to go to the

Cloud9 console.

2. You should see a list of environments. If you don't, click on the hamburger menu icon (the

three parallel lines) near the top left of the screen and click on Your environments.

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 7 of 13

3. Click the Open IDE button in the IoTOnAWS card.

4. It may take a minute for your environment to start.

4.2 Download the webpage code

1. Create a new working folder, download the webpage code in that folder and unzip it by

running the following commands in your AWS Cloud9 terminal:

mkdir ~/environment/exercise-3.1

cd ~/environment

wget https://aws-tc-largeobjects.s3.amazonaws.com/OTP-AWS_D5-2019/v1.0/code/exercise

-3.1.zip

unzip exercise-3.1.zip -d ~/environment/exercise-3.1

4.3 Modify the configuration file for your environment

In this section, you will use different commands to edit the exercise-3.1/aws-configuration.js file.

It's a configuration file that contains different elements that points to your resources that will be

used when you load the website via your browser. The first one is the ID of the Cognito Identity

Pool that you created. The second property is your AWS IoT Endpoint that you have been using

in each of the exercises. The last one is the region you are operating in.

1. Insert the Identity Pool ID of your Cognito Identity Pool in the configuration file. Run the

following command in the Cloud9 terminal to put the Identity Pool ID in a variable and

replace it in the configuration file:

cd ~/environment/exercise-3.1

poolid=$(aws cognito-identity list-identity-pools --max-results 60 | grep -B1 labIo

Pool | grep -Po '"'"IdentityPoolId"'"\s*:\s*"\K([^"]*)')

 sed -i "s/xpoolidx/$poolid/" aws-configuration.js

2. Insert your AWS IoT Endpoint in the configuration file. Run the following command in

the Cloud9 terminal to put your AWS IoT Endpoint in a variable and replace it in the

configuration file:

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 8 of 13

cd ~/environment/exercise-3.1

endpoint=$(aws iot describe-endpoint --endpoint-type iot:Data-ATS | grep -Po '"'"en

dpointAddress"'"\s*:\s*"\K([^"]*)')

sed -i "s/xendpointx/$endpoint/" aws-configuration.js

3. Insert the region code in the configuration file. Run the following command in the

Cloud9 terminal to put the region code in a variable and replace it in the configuration

file:

cd ~/environment/exercise-3.1

region=$(aws configure get region)

sed -i "s/xregionx/$region/" aws-configuration.js

4. Feel free to look at the configuration file. In the left side of the Cloud9 environment,

open the exercise-3.1/aws-configuration.js file by double-clicking on it.

4.4 Upload the Website code to S3

1. In the AWS Cloud9 terminal, enter the following commands to upload the code to your

S3 Bucket. Replace bucketname_changeme with your S3 Bucket name that you

created in section 3. It will upload the code with the public-read ACL which allows

anyone to access those objects if they have the URL. Since this is a development

environment, it's not an issue. However, if this was your production environment, you

should consider using CloudFront in front of your S3 Bucket and lock access only from

CloudFront. That is beyond the scope of this exercise.

cd ~/environment/exercise-3.1

aws s3 cp --recursive --acl public-read . s3://bucketname_changeme

You should see an output like the following:

upload: images/car-no-lights.png to s3://bucketname_changeme/images/car-no-li

ghts.png

upload: images/car-with-lights.png to s3://bucketname_changeme/images/car-wit

h-lights.png

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 9 of 13

upload: ./aws-configuration.js to s3://bucketname_changeme/aws-configuration.

js

upload: ./index.html to s3://bucketname_changeme/index.html

upload: ./index.js to s3://bucketname_changeme/index.js

upload: ./aws-iot-sdk-browser-bundle-min.js to s3://bucketname_changeme/aws-

iot-sdk-browser-bundle-min.js

5. Start car1 and use the webpage application

In this section, you will start car1 using the same code as Exercise 2.2. You will then browse to

your web application and interact with car1's Thing Shadow.

1. In the AWS Cloud9 terminal, enter the following commands to start car1.

cd ~/environment/car1

node exercise-2.2.js

You should see the following. You may see a different status for the lights, but that isn't an issue.

You can continue with the next step.

The car1 has been registered.

Sending initial get to set the light state.

Received the initial get data.

Found a previously reported state, setting my lights to that

My lights are off

 __/ __

| _ _ `-.

'-(_)---(_)--'

Leave car1 running.

2. In the AWS Management Console, click Services, and then click S3 to go to the S3

console.

3. Click the name of the S3 Bucket that you created. You should see a list of objects.

4. Click the check mark next to index.html. An overlay window will appear from the right.

5. Click on the Object URL link. This will open the web application.

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 10 of 13

6. You can see the same lights status as you saw earlier when you started car1. You should

see a car image with its lights turned off (or on depending on what your lights state was).

7. Click Toggle car1's lights.

o You will see that the lights of the car have changed.

o You can also see in the Cloud9 terminal that the lights have changed as well.

o You shouldn't see any delay between the time that you pressed the button and that

the lights changed in the web page. You may think that it's normal as the button

just changed the car image, but what happened is a bit more complex. What just

happened is that a desired state was published to the AWS IoT service by the web

application (JavaScript in your browser). A delta was created by the AWS IoT

service and the car1 application running in Cloud9 received the delta, changed its

lights status and published a reported state. The web application running in your

browser received the reported state and changed the text and car image. All of

that within a split second.

The web application is running as JavaScript in your browser. Feel free to review the code of the

application. You can view it in AWS Cloud9 under index.js. That code has not been packaged

(webpack, browserify, uglify or others) on purpose so that you can read it. In summary, the code

first gets new credentials from your Cognito Identity Pool using the AWS SDK. It then uses the

AWS IoT Device SDK to create a Thing Shadow very similar to the code in lab 7 part 1. Once it

registers to the Thing Shadow topics, it sends a get request to receive the

currently reported state and shows it in the browser. When the Toggle car1's lights button is

pressed, it uses the update function to send a desired state to AWS IoT. The delta is generated

by AWS IoT, sent to car1 which changes the state of its lights and publishes a

new reported state. This state generates a foreignStateChange event that triggers the function

to change the car image and text.

You have now successfully interacted with a Thing Shadow from a browser using the MQTT

over WebSocket protocol authenticating via the SigV4 protocol by using temporary credentials

received from your Cognito Identity Pool.

6. Delete the resources created in this exercise

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 11 of 13

In this section, you will remove all the different resources created as part of this exercise that

won't be required for the other exercises.

The resources from lab 6 part 1 will still be there and should remain in place. If you would like to

remove the resources from lab 6 part 1, refer to that exercise.

6.1 Stop car1

Although car1 doesn't send any messages, it is connected to the IoT service and should be

disconnected to prevent charges.

1. Press Ctrl-c in the Cloud9 terminal to stop car1 from interacting with AWS IoT.

6.2 Delete the S3 Bucket

1. In the AWS Management Console, click Services, and then click S3 to go to the S3

console.

2. Click the check mark next to the name of your bucket.

3. Click Delete.

4. In the field, enter the name of your bucket.

5. Click Confirm.

6.3 Undo the changes to the public access settings for S3

If you didn't have to change any settings for the Block public access (account settings) in

section 3, you can skip this step. If you did have to change those settings, edit the settings below

in accordance to what they were.

1. In the AWS Management Console, click Services, and then click S3 to go to the S3

console.

2. Click the Block public access (account settings) link on the left menu.

3. Click the Edit button.

4. Click the check mark next to Block public access to buckets and objects granted

through new access control lists (ACLs) if that setting was checked before.

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 12 of 13

5. Click the check mark next to Block public access to buckets and objects granted

through any access control lists (ACLs) if that setting was checked before.

6. Click Save.

7. Enter confirm in the field.

8. Click Confirm.

6.4 Delete the Cognito Identity Pool

1. In the AWS Management Console, click Services, and then click Cognito to go to the

Cognito console.

2. Click Manage Identity Pools.

3. Click the labIoTPool link.

4. Click the Edit identity pool link at the top right of the page.

5. Expand Delete identity pool.

6. Click the Delete identity pool button.

7. Click Delete pool.

6.5 Delete the IAM Roles

1. In the AWS Management Console, click Services, and then click IAM to go to the IAM

console.

2. Click Roles in the left menu.

3. In the Search field, enter Cognito_labIoTPool.

4. Click the check mark next to Cognito_labIoTPoolAuth_Role

5. Click the check mark next to Cognito_labIoTPoolUnauth_Role

6. Click Delete role.

7. Click Yes, delete.

6.6 Stop the Cloud9 environment

Lab no 07 part2 –Interacting with Car1's Shadow over the Web

 Page 13 of 13

The Cloud9 environment will automatically shut down after 30 minutes of inactivity. For your

Cloud9 environment to be considered inactive, you need to close the browser tab. All of the

settings will be saved.

1. Close the browser tab where your environment was running.

As the operating system is Amazon Linux, you are billed by the second during those 30 minutes

of inactivity. If you are under the free tier, this would be covered. If you are no longer under the

free tier, you can force a stop of the EC2 instance that runs your Cloud9 environment. This will

have no effect on the future labs.

1. In the AWS Management Console, click Services, and then click EC2 to open the EC2

console.

2. Click Instances in the left menu.

3. Select the EC2 Instance that has a name that starts with aws-cloud9.

4. Click Actions > Instance State > Stop instance

Note:

 Labs are from Course: AWS IoT: Developing and Deploying an Internet of Things

 https://www.edx.org/course/aws-iot-developing-and-deploying-an-internet-of-th

https://www.edx.org/course/aws-iot-developing-and-deploying-an-internet-of-th

